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/ INTRODUCTION 
 

Lithium-ion batteries are an integral part of the 
transition to renewable energy, both for the 
automotive sector’s transition to green mobility, 
and for the transition to generating electricity 
from more reliable and sustainable technologies. 
As renewable energy sources such as solar and 
wind are intermittent and therefore unreliable 
power sources, energy must be stored for 
certain periods of time. Technologies are 
required to stabilize the grid by ensuring that 
energy is released into the grid or removed from 
the grid when necessary.  

Two major lithium-ion technologies are currently 
used in the field of stationary energy storages: 
NMC (Nickel Manganese Cobalt) and LFP 

(Lithium Iron Phosphate). While people often 
speak about NMC and LFP cells, this naming 
describes only one half of the active materials in 
the cells. NMC and LFP refer to the cathode 
material of the cells. The anode part is often 
neglected as it usually consists of graphite in 
both cases and therefore does not need a 
further distinction. The set-up of lithium-ion 
batteries is explained in more detail below.  

NMC is currently the most mature existing 
technology, and it is therefore widely used, 
especially in the automotive industry due to its 
beneficial specific energy and ideal combination 
of reasonable lifetime, safety, and reliability. 

 

 

/ WHY ARE LFP CELLS GROWING IN POPULARITY? 
 

LFP cells can be disadvantageous in terms of the 
specific amount of energy they can provide, 
meaning that an LFP battery with the same 
energy content as an NMC battery can weigh up 
to 25% more. However, this disadvantage does 
not apply to stationary energy storages, for 
which the size of a battery is less relevant. 
Integrators and owners of energy storages 
benefit from lower costs - according to 
Bloomberg,  LFP cells cost up to 20% less on cell 
level - and improved sustainability, as fewer toxic 
materials are required to produce the batteries 
and conditions for collecting the raw materials 

are better. LFP cells are additionally safer and 
have longer lifetimes.  

While most publications on the different cell 
technologies mostly concentrate on the above-
mentioned aspects of safety, lifetime, or specific 
energy, one key aspect is often neglected: 
battery analytics and control.  

LFP batteries come with a unique set of 
challenges in terms of battery analytics and 
operation. So, let’s dive a little bit deeper.
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/ WHAT IS BATTERY ANALYTICS ABOUT? 
 

Let’s look at it from a broader perspective. 
Proper state estimation of batteries is of the 
utmost importance in all cases where batteries 
are used, and that’s why we at TWAICE bring 
battery analytics to the next level. You can only 
operate your energy storage to its full extent and 
keep your storage and therefore investment safe 
if you know accurately in which condition your 
storage is in.   

To pick just one example for state estimation, 
let’s talk about State of Charge (SoC). State of 
Charge describes how much charge is left in 
your battery to provide grid services, such as 

frequency regulation or arbitrage. Figure 1 gives 
a schematic depiction of SoC explained, with a 
mostly depleted battery on the left and a fully 
charged one on the right.  

 

Figure 1: State of Charge

 

 

/ WHY IS STATE OF CHARGE ESTIMATION IMPORTANT FOR ENERGY STORAGES 
 

Proper SoC estimation is vital for stationary 
energy storages, as they fulfil important tasks 
such as emergency power generation in 
hospitals or grid stabilization. Consequently, 
improper state estimation, for example assuming 
an 80% SoC while only having 60% left, can have 
profound consequences in many ways and can 
cause safety issues and economic losses due to 
non-reliable storage operation. Not being able to 
deliver promised energy as grid service can lead 
to high fines or even permanent exclusion from 
grid service markets.  

/ How state of charge is usually estimated 
To estimate state of charge, there are a few 
major categories of methods:  

- Charge throughput-based, called 
coulomb counting 

- Voltage-based  
- Filter-based, for example using Kalman 

filters  
- Machine learning-based, comprising 

support vector machines, neural 
networks etc.  

We will focus on the first 3 categories. But we 
shall keep in mind that machine learning models 
are simply different ways to capture, learn and 
later describe the behavior of a physical system 
called a battery. So, looking at it from a first 
principles perspective, every challenge arising 
from the physical properties of a cell also must 
be learned and solved by a machine learning 
approach as well. There is no shortcut here, only 
different ways regarding how to solve it.  

/ Solutions for estimating State of Charge 
Coulomb-counting  

In this method, you take the assumption that it is 
impossible to measure current perfectly. This is 
due to sensor drifts caused by the thermal 
behavior of the sensors, limited sample rates etc. 
If we take a 100 Ah cell as an example and 
assume that when charged and discharged with 
C/2 (discharge rate which causes a full discharge 
in 2 hours), we measure approx. 50.5 A on 
average instead of 50A. This causes an SoC 
error integration of 1%/full cycle. After only 20 
cycles, the SoC already shows an error of 20%, 
meaning the storage can no longer be operated 
reliably.   

Voltage-based methods  

Again, voltages cannot be measured perfectly. 
But even more importantly, the open circuit 
voltage (OCV) changes with temperature and 
aging. In addition, there is a hysteresis behavior 
(dependence of the state of a system on its 
history), making it more unclear in which range of 
the hysteresis band the cell currently operates. 
With every load, the cell is further excited away 
from its relaxed state and depending on 
temperature and state of charge, relaxing back 
can take multiple hours. If we account for 
inhomogeneities in the electrodes which only 
very slowly diffuse back, sometimes it takes days 
or weeks. Combined with flat regions of the OCV 
(meaning a small change in OCV correlates to a 
big change in SoC), this renders accurate SoC 
estimation only based on measured voltages 
impossible.  
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Figure 2: OCV & voltage hysteresis 

Kalman filter  

So, what does this Kalman filter, that is 
mentioned in so many scientific papers, do? This 
third method, if we want to generalize it, is a 
sophisticated combination of the two methods to 
account for the issues mentioned above. Inside 
a Kalman Filter, a battery model is used to 
efficiently capture the battery behavior with state 
of charge and temperature dependency, 
hysteresis behavior, relaxation times etc. If this 
model would work perfectly well, combined with 
perfect sensor readings, we could always 
subtract the modeled dynamics from the real 
measured field data and would have our OCV, 
which could be mapped to our SoC again.  

Unfortunately, there is no model existing today 
that provides 100% accuracy. Models differ in 

their accuracy and reliability, but none of them 
can capture everything, especially when 
computational time and effort are taken into 
account. This is where Kalman filters come in. As 
mentioned, the Kalman-filter uses a battery 
model, e.g., an equivalent circuit model to 
combine it with uncertainties for a set of 
parameters. By this, theoretically, all model 
parameters as well as measured values can be 
accompanied by an uncertainty value 
accounting for errors or noise in sensor 
measurements, model parameterization errors 
etc. In each step, the Kalman-filter then corrects 
the estimation. Even though many types of 
Kalman filter exist, the first principle applies 
again, revealing the true challenge: How you 
tune your "noise Parameters" has the highest 
impact on your model accuracy.   

/ Key takeaways 
If we want to break it down into the simplest 
words, SoC estimation requires always knowing 
the state of your cells on the OCV (open-circuit 
voltage) curve. The OCV curve is the “passport” 
of the cell, showing you all essential information 
of the cell status at a glance. Either you always 
know exactly where you walked along your path 
(coulomb counting), or where you currently are 
(voltage measurement) or combine both with the 
knowledge that you do not know both for sure 
(Kalman filter).  

We will now come back to the topic of NMC and 
LFP. 
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/ NMC AND LFP CHARACTERISTICS COMPARED 
 

The insertion and extraction of lithium ions into 
and from the cathode material follows different 
physical paths in NMC and LFP cathodes. While 
NMC follows a so called “solid-phase-
transformation” in which the entire cathode 
structure participates in the reaction, LFP exhibits 
a “phase-transformation" with a lithium rich and 
lithium poor phase in the cathode particles. As a 
simplified analogy, the behavior of the LFP 
cathode is comparable to boiling water. When 
heating up water, the water temperature will not 
increase above 100°C (at atmospheric pressure) 
until the entire liquid water has evaporated and 
the phase transformation from liquid to gas is 
finished. The structural differences between LFP 
and NMC reveal themselves as well when 
looking at their intrinsic safety property. As the 
oxygen atoms are more strongly bonded in the 
LFP structure, the material can withstand higher 
temperatures and generate less reaction heat 
when a thermal runaway occurs, thus, leading to 
higher safety & protection for thermal runaways.   

But there is another aspect even more important 
if we look at it from the perspective of battery 
operation and battery analytics. The structural 
differences of LFP and NMC cause different 
shapes of the OCV of the respective cells. While 
NMC has a more monotonous slope of the curve, 
while of course showing different plateaus 
representing the different graphite stages, LFP 
comes with a very flat OCV especially in the 
region of 40 to 80 % SoC. 

 

Figure 3: SoC of LFP and NMC cells 

Let’s assume you try to estimate SoC on a 
voltage-based basis: Already very small errors in 
voltage estimation can cause huge distortions on 
your SoC estimation. Coulomb counting also 
does not work as we have already discussed 
above.   

Operating on a false SoC can have huge 
consequences for the operation of the 
respective storage, as discussed previously. It 
can result, on the one hand, in accelerated aging 
of the stationary energy storage system due to 
operation in unfavorable SoC ranges and, on the 
other hand, revenue losses and financial 
penalties due to unfulfilled contractual 
obligations.   

This leaves us with the Kalman-filter-approach, 
but also this one becomes much more complex 
as little uncertainties in the hysteresis or the 
resistance parameters of the model also directly 
translate into higher uncertainties for the SoC 
estimation.
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/ OUR ANALYTICS APPROACH FOR LFP CELLS 
 

Estimating SoC for LFP cells therefore requires a 
unique combination of methods and resources. 
This combination comprises:  

• High fidelity electric-thermal models 
accurately describe hysteresis. 
Relaxation is derived from initial 
parameterization in the laboratory.  

• Deep battery analytics knowledge for 
Kalman filter tuning.  

• Leveraging of field data to constantly 
keep track and update model 
parameters, such as impedance and 
resistance.  

• Leveraging of field data, for example 
for artificial intelligence-based graphite 
stage detection as a reference and 
calibration tool.  

• Combining with additional approaches, 
such as direct current resistance (DCR) 
& SoC correlation.  

Utilizing field data to its full potential, the capacity 
estimation can be accompanied by a resistance 
or impedance estimation. As can be seen in the 
figure 4, the 30 s DCR shows a particularly 
significant relationship to the state of charge, 
especially when it comes to low SoC regions 
where operational risk is the highest as too low 

SoC can cause unfulfillment of obligations of the 
storage operator.  

Especially in the field of stationary energy 
storages, certain operation strategies such as 
intraday trading offer enormous potential as a 
storage is charged or discharged with an approx. 
constant power for several minutes. Combined 
with the flat voltage characteristic of the LFP 
cells, this offers a laboratory-like diagnostic pulse 
for our in-life analytics software to accurately 
determine the SoC for LFP storages.  

 

Figure 4: relationship between DCR and SoC 
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/ CONCLUSION: ESTIMATING THE SOC OF LFP CELLS IS A CHALLENGE 
 

The major analytics challenge for LFP cells 
compared to NMC is the correct estimation of the 
SOC. The root cause originates from the flat OCV 
curve in which small voltage measuring errors 
result in a huge error in SOC determination. 
Operating battery energy storage under false 
SOC can lead to safety issues or result in 
economic impacts by not being able to deliver 
promised grid services and accelerated aging of 
the battery.  

We combine multiple modeling approaches in a 
self-regulating manner and data from storages in 

the field to maximize and constantly track the 
accuracy of the battery model. Additionally, we 
are increasing our lab capacity to examine 
common LFP cell types in our lab.  

In case you face similar issues in operation, or 
you plan to build LFP-based battery energy 
storages, we are here to provide the best-
practice LFP analytics to provide reliable SoC 
and SoH determination to provide peace of mind 
for your operators and trading strategy.
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/ ABOUT TWAICE 
 

TWAICE provides predictive analytics software 
that optimizes the development and operation of 
lithium-ion batteries. TWAICE´s core technology 
is the digital twin – a software that combines 
deep battery knowledge and artificial 
intelligence to determine the condition and to 
predict battery aging and performance. 

 

 

This makes complex battery systems more 
transparent, effective and reliable. As the leading 
battery analytics software for global players in 
the mobility and energy sectors, TWAICE is 
committed to increasing the lifetime, efficiency 
and sustainability of the products that power the 
economy of tomorrow. 

TWAICE TECHNOLOGIES GMBH 

Joseph-Dollinger-Bogen 26 
80807 Munich 
Germany 
 
sales@twaice.com 

+ 49 89 997 324 58 
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